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The possibility of predicting on a purely theoretical basis the existence of some “ele-
mentary” particles composing chemical particles (atoms, molecules) is studied. For this
purpose the notion of Fock theories in separable Hilbert spaces is introduced. By using
the mathematical structure of Fock theory—which is a nontrivial generalization of the
Fock space—the notion of particle as sharp entity is defined. It is proved that chem-
ical changes cannot be described by those Fock theories, which consider particles as
sharply defined entities. This is a consequence of quantum-mechanical dynamical pos-
tulate concerning time evolutions of conservative systems. Finally it is shown that a cat-
egory of Fock theories may describe changes in the number of chemical particles during
conservative evolutions. This result is naturally obtained if the hypothesis about exis-
tence of some “elementary particles” composing chemical particles is accepted. Another
simultaneously obtained conclusion is that chemical particles involved in chemical pro-
cesses cannot be sharply defined.

1. Preliminaries

At the beginnings of chemistry as an exact science the so-called fundamen-
tal laws of chemistry were those, which suggested that chemical substances are
composed of atoms and molecules (chemical particles). These laws were estab-
lished after careful—for those times—quantitative determinations on initial and
final compositions of reacting chemical systems. The success of chemical parti-
cles in explaining a lot of chemical facts led automatically to the idea that they
are quite well defined entities. Account taking of this, we might assume, at least
in principle, the existence of chemical experiments for determining the number of
chemical particles in any mixture of substances. This is a very important obser-
vation, which will be consistently used below.

Later the progress of experimental physics constrained the scientists to
accept that the matter is composed from various “elementary” particles, which
imposed to consider that chemical particles have a structure. The basic elements
of this structure were electrons and nuclei. Then the quantum mechanics has
been developed as the appropriate theoretical apparatus for describing systems
of such particularly small particles.
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In this paper an interesting fact is evidenced, which may be formulated in
two assertions.

(C1) The atomic-molecular structure of matter has been predicted by mea-
surements of chemical composition for initial and final states of chemical sys-
tems, without considering the dynamic of chemical processes. In other words, for
predicting the composition in “chemical particles” of matter, “static” consider-
ations were sufficient.

(C2) The existence of some particles, which do not change during chem-
ical processes, entering in the structure of chemical particles may be naturally
predicted when one tries the description of chemical processes in the framework
of traditional/Hilbert-space quantum mechanics. In other words, the necessity of
considering a structure of chemical particles has a “dynamical” motivation.

This work represents an attempt to justify the assertion (C2). Concretely, we
intend to study in Hilbert-space quantum mechanical theory two closely related
problems. Firstly, we will try to make as clear as possible the meaning of sharply
defined particles in quantum mechanical formalism. In the second paragraph we
will show that this becomes possible if a special mathematical structure, which
will be called Fock theory, is introduced. Secondly, it will be shown how, by
using Fock theories and the conservative evolutions can be predicted the particle
structure of chemical particles. This will be done in the third paragraph. Our dis-
cussion is entirely developed in the framework of general Hilbert-space formal-
ism with a few and absolutely necessary physical interpretations of the involved
mathematical objects. That is because the fundamental character of our conclu-
sions imposes avoiding the use of some more or less “concrete” models, like L2

spaces of wave functions or explicit forms of many-particle Hamiltonians. The
reader may find the elementary mathematical notions used in the paper in the
first part of the small Halmos’ book about Hilbert spaces, [1].

2. Fock theories for chemical particles

In what follows we will use a Hilbert space H of infinite countable dimen-
sion. The inner product and the norm of the vectors x, y will be denoted by
(x, y) , ‖x‖ respectively. The set of natural numbers, including 0, will be denoted
by N. The normed vectors from H represent the pure states of the systems, which
may be described in H. All the following discussion will refer to the pure states
only. An arbitrarily fixed set of species of particles denoted by S = {s1, . . . , sn} is
considered among basic objects of our work. They may be thought of as chem-
ical particles, but this is not always necessary for our reasoning or conclusions.

As it has been already told in Preliminaries, we may affirm that there are
chemical experiments—or measurements—permitting to determine the number of
chemical particles in any state of an arbitrarily given system. Then it is not difficult
to assume that, at least in principle, we may talk about “yes–no” experiments able
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to decide if a state/system has or does not have a given composition in particles
of S. Suppose (k1, . . . , kn), k1, . . . , kn ∈ N represents the ensemble of numbers of
particles of the species s1, . . . , sn respectively. In other words, (k1, . . . , kn) denotes a
possible composition in particles of an arbitrarily given state. The “yes–no” exper-
iment corresponding to (k1, . . . , kn) will be indicated by the symbol e(k1, . . . , kn)

and will be called occasionally counting test. Since e(k1, . . . , kn) may be measured,
it represents a physical quantity. The set ES = {e(k1, . . . , kn); (k1, . . . , kn) ∈ N

×n}
offers a complete description of chemical systems in terms of counting tests. This
description becomes effective only if the elements of ES may be represented in
an adequate physically significant mathematical scheme. We will use the tradi-
tional Hilbert space quantum mechanics. In other words we have to find the
objects corresponding to the “yes–no” experiments/observables in the Hilbert-
space formalism. But we know that in the Hilbert-space quantum mechanics any
observable is a selfadjoint operator. The question is what kind of selfadjoint oper-
ators may represent “yes–no” observables. In his famous book on Hilbert-space
quantum mechanics von Neumann discusses the problem of orthogonal projec-
tors as observables, [2]. We know that the selfadjoint operator P is an orthogonal
projector in a Hilbert space H if P 2 = P . Any projector P has only two pos-
sible eigenvalues, 0 and 1. Since a “yes–no” experiment has only two possible
results, i.e. “yes” and “no”, it results without equivoque that the only selfadjoint
operators, which may represent counting tests are orthogonal projectors (in what
follows they will be called simply projectors). Therefore, the representation of
the family ES of counting tests in the Hilbert space H must be a family HS =
{P(k1, . . . , kn); (k1, . . . , kn) ∈ N

×n} of projectors. Obviously, the correspondence
between counting tests and projectors from HS , e(k1, . . . , kn) �→ P(k1, . . . , kn),
should satisfy some specific general properties. In order to enounce them let us
remember that there exists a one-to-one correspondence between projectors in H
and the set of all closed subspaces of H. This important result may be found in any
general book of functional analysis. For our problem it is sufficient to know that
the subspace corresponding to P(k1, . . . , kn) is H(k1, . . . , kn) ≡ P(k1, . . . , kn) H,
that is the range of the projector P(k1, . . . , kn). Obviously, the space H(k1, . . . , kn)

contains all normed vectors describing those states whose composition in particles
is surely (k1, . . . , kn). These vectors are eigenvectors of P(k1, . . . , kn) for the eigen-
value 1. The first observation is that for (k1, . . . , kn) �= (k′

1, . . . , k
′
n) the equality

H(k1, . . . , kn) ∩ H(k′
1, . . . , k

′
n) = {0} has to be valid. Indeed, otherwise we would

find a state having with probability 1 two different compositions in particles. This
is clearly a physical nonsense. It is useful to keep in mind that the probability of
finding the composition (k1, . . . , kn) in the state x is given by the scalar product
(x, P (k1, . . . , kn)x). Then we will admit that the closed linear subspace generated
by the set

⋃
(k1,...,kn)

H(k1, . . . , kn) equals H. If this is not so, then we may replace
the space H with the just mentioned subspace. Finally, it is intuitively clear that
the subspace H(0, . . . , 0), called the vacuum of S, has to be orthogonal to all
subspaces H(k1, . . . , kn). The family of all subspaces H(k1, . . . , kn) will be denoted
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by Hσ
S . We are now prepared for defining the notion of a Fock theory associated

to the family Hσ
S .

It is convenient to denote by C(Hσ
S ) the set of all normed vectors belong-

ing to one of the subspaces from the family Hσ
S . The elements of C(Hσ

S ) will be
called chemical states (C-states) of the family Hσ

S . Given x ∈ H a C-state, we say
that it is a chemically pure state (CP-state) of Hσ

S if there exists a unique projec-
tor P ∈ HS such that (x, Px) �= 0. Given � ⊃ C(Hσ

S ) a set of states, we say that
the pair (Hσ

S , �) is a Fock theory. If all elements of � are CP-states, then we say
that (Hσ

S , �) is a particle theory.
Obviously, a Fock theory may be constructed from any family of subspaces of H
having the general properties of Hσ

S and any set of states containing all chemical
states of that family. We will prove now an important property of particle theo-
ries.

Proposition 1. If (Hσ
S , �) is a particle theory, then the subspaces of Hσ

S are
mutually orthogonal and � = C(Hσ

S ).

Proof. Let us consider P, Q ∈ HS, P �= Q and x, y ∈ H normed vectors such
that Px=x, Qy=y. Since (Hσ

S , �) is a particle theory, (x, y) = (Px, y) = (x, Py)

=0. It results that the ranges of P and Q are orthogonal, so that the subspaces
of the theory are mutually orthogonal. Further, if z is a normed vector, which
does not represent a chemical state, then we may write z = ∑

p∈Hσ
S

cpxp. Since
z is not a chemical state, we may find p �= p′ such that cp, cp′ �= 0. Finally,
given P, P ′ the projectors corresponding to subspaces p, p′ respectively, we find
(z, P z) ,

(
z, P ′z

) �= 0, which means that z is not a CP-state. The proposition is
completely proved.

The physical meaning of Proposition 1 is almost obvious: in a particle the-
ory particles are sharply determined entities. In other words only those states
are accepted in the theory, which have a precisely determined composition in
particles.

Let us observe that, besides particle theories we can imagine other two
classes of theories. One of these classes is that of orthogonal theories. A theory
(Hσ

S , �) is said to be orthogonal if the elements of Hσ
S are mutually orthogo-

nal but it has states, which are not chemically pure. Obviously, all C-states of an
orthogonal theory are also CP-states. The other class is that of non-orthogonal
theories. For such a theory the elements of Hσ

S are not mutually orthogonal. It
is easy to prove that, in an orthogonal theory any normed vector z, which is
not a CP-state, may be represented as a normed linear combination (or series)
of CP-states. Non-orthogonal theories have a property, which is important from
physical point of view.
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Proposition 2. In any non-orthogonal theory there exist C-states, which are not
CP-states.

Proof. Let (Hσ
S , �) be a non-orthogonal theory. Then we may find two C-states

x, z such that (x, z) �=0 and for two non-orthogonal projectors P, Q ∈ HS ,
we have Px=x, Qz=z. Then we may write (x, Px) =1, (x, Qx) �=0. The equality
(x, Px) =1 being obvious, it remains to prove that (x, Qx) �=0. But Q=Qz + Q′,
where Qz is the projector on the one-dimensional subspace generated by z and
Q′ is a projector orthogonal on Qz. Then we have (x, Qx) = (

x, (Qz + Q′)x
)

�
(x, Qzx) = |(x, z)|2 �= 0. Similarly it may be proved that (z, P z) �=0, so that both
x and z are not PC-states. The proposition is proved.

At this moment it is important to make the physical meaning of Fock the-
ories as clear as possible. It consists essentially in the fact that a Fock theory
for the set S = {s1, . . . , sn} is a mathematical scheme able to describe chemical
systems/states containing particles of the species from S only and their time evolu-
tions (see the next section). Of a major interest is also the observation that Fock
theories represent a quite natural framework for distinguishing those particles,
which are sharply defined entities. The above considerations suggest that it is bet-
ter to talk about states of a Fock theory in which the composing particles may be
considered to be sharply defined. Naturally, such states are those, which are chem-
ically pure. Since only chemical states can be CP-states, we may prove that a state
is chemically pure if and only if it belongs to a subspace fromHσ

S , which is orthogonal
to any other subspace of Hσ

S . Therefore, when we talk about sharply defined par-
ticles, we understand that the particles in question are described by a state, which
is chemically pure in a given Fock theory. It results that we consider meaningless
the statement “some given particles are sharply defined entities” unless a theoret-
ical framework—in our case a Fock theory—is specified. That is because we have
never sufficiently many empirical data for saying that the mentioned statement is
true. Therefore, the only possible procedure is to choose a theoretical framework,
which describes chemical species in accord with the existing at a given moment
empirical data. The chosen theory must be able to predict, at least in principle, the
behavior of chemical systems. For instance to describe the time evolution of such
systems. In the next paragraph the time evolution of conservative chemical sys-
tems in Fock spaces will be discussed as well as its connection with the structure
of chemical particles.

3. Conservative time evolutions of chemical states

The dynamical principle of non-relativistic quantum mechanics affirms that
the time evolution of any state is completely described by a family of unitary oper-
ators in H, denoted by (Ut), where t runs the set R of real numbers. We will call
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(Ut) time evolution or simply evolution. The conservative systems are described by
one-parameter strongly continuous groups of unitary operators. In other words,
(Ut) is a so-called conservative evolution if it has the following two properties:

(e1) Ut+t ′ = UtUt ′, ∀t, t ′ ∈ R;
(e2) lim

t→t ′
‖Utx − Ut ′x‖ = 0, ∀t ′ ∈ R, x ∈ H.

It is interesting to point out that the group property (e1) is justified by the homo-
geneity of time with respect to conservative systems, but the strong continuity (e2)
is not a physically transparent property. It is only indirectly justified by the fact
that a one parameter group is generated by a selfadjoint operator/Hamiltonian if
and only if it is strongly continuous, (Stone’s theorem). In what follows we will use
conservative evolutions without any reference to their corresponding Hamiltonian
or to possible concrete forms of Hamiltonians.

The dynamical principle implies clearly that any change of a state must
be considered by the general evolution of the system. Therefore, any chemical
change occurring in a system must be described by its evolution. It is supposed
also that the conservative systems studied bellow do not exchange matter with
the environment, which means that any modification of the number of particles
is caused by the chemical interactions between particles contained in those sys-
tems.

In order to describe chemical processes in a Fock theory (HS, �)/(Hσ
S , �)

we need some specific notions. Let x be a chemical state and (Ut) an evo-
lution with the property Ut� ⊆ �, ∀t ∈ [0, ∞) (called admissible in the
(Hσ

S , �) theory). For any species si we define the function Ci,x : [0, ∞) → R,
Ci,x(t) = ∑

α kiα(Utx, P (α)Utx), where kiα = ki if α = (k1, . . . , kn), which
will be called composition function for the triple (x, (Ut), si). Let us consider that
(HS, �) is orthogonal. For any k ∈ N we may define the projector Pik =∑

(k1,... ,kn) ki=k P (k1, . . . , kn). The selfadjoint operator Ni = ∑
k kPik is an observ-

able whose eigenvalues represent the number of particles of the species si . In
this case the corresponding composition function takes the simple form Ci,x(t) =
(Utx, NiUtx). Obviously, such a construction can not be done for non-orthogo-
nal theories.

Now we are prepared for proving the central result of this paper.

Theorem . Let us consider (HS, �) a particle theory and (Ut) an admissible
evolution. If (Ut) defines a non-constant composition function, then it is not
strongly continuous.

Proof. Let Ci,x(t) ≡ C(t) be the non-constant composition function. Consider
the following two statements:
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(i) there exists τ � 0 such that ∀t ′ > τ, ∃t ′′ ∈ (τ, t ′) with the property
C(t ′′) �= C(τ);

(ii) for all τ � 0 there exists t ′ > τ such that C(t ′′) = C(τ), ∀t ′′ ∈ [τ, t ′).

One of these two statements must be true since (ii) represents the negation of
(i). It will be shown that in both cases the evolution is not strongly continuous.
Suppose first that (i) is true and let us take an interval (τ, t ′) on which C(t) is
not constant. Then we can find t ′′ ∈ (τ, t ′) such that (Uτx, Ut ′′x) = 0. Indeed,
if we admit that (Uτx, Utx) �= 0, ∀t ∈ (τ, t ′), we get that C(t) is constant on
(τ, t ′) since in particle theories two non-orthogonal states belong to the same
subspace of the theory, which contradicts (i). By using this fact, we can con-
struct a sequence (tk) such that the following is true: lim tk = τ, (Uτx, Utkx) =
0, ∀k. If it is admitted that (Ut) is continuous, then obviously limk

(
Uτx, Utkx

) =
0 = (Uτx, Uτx) = 1, absurd. The obtained result is that, if (i) is true, then
(Ut) is not strongly continuous. Suppose now that (ii) is true. Then there exists
[0, t1), [t1, t2), . . . , [tn, tn−1), . . . an at most denumerable family of intervals whose
union is the interval [0, ∞) and C(t) is constant on each [tn−1, tn), the constants
corresponding to different intervals being different. The last assertion is sup-
ported by the fact that C(t) is not constant. In the interval [tn−1, tn) we find a
sequence tnk →k tn. Suppose (Ut) is strongly continuous. Then, just as it has been
done in the case (i), we get the following equalities: limk

(
Utnk

x, Utnx
) = 0 =(

Utnx, Utnx
) = 1, absurd. The theorem is completely proved.

This theorem has important physical implications. Their discussion needs a
definition of chemical systems adapted for considering chemical changes. More
precisely, in the framework of Fock theories any chemical change means a modifi-
cation in time of the number of particles present in the system. The most natural
way of giving a formal definition for chemical systems is to identify them with
pairs of the type (x, (Ut)), where x is a chemical state and (Ut) an admissible
evolution. The simplest empirical model of a chemical system is that of a closed
envelope containing different particles whose number changes according to a given
evolution.

The first important consequence of Theorem is that in particle Fock the-
ories there are not conservative evolutions describing changes in the number of
particles. In other words, all subspaces from Hσ

S are invariant under operators of
any conservative evolution. This means that, given (Ut) a conservative evolution,
we have UtH(k1, . . . , kn) ⊆ H(k1, . . . , kn), ∀t ∈ R, (k1, . . . , kn) ∈ N

n. We can see
that particle Fock theories are perfectly adapted for describing systems of par-
ticles, which are stable in conservative conditions. In other words, if the number
of particles in any state and at any moment is perfectly determined, then it can
not change under conservative evolutions. Equivalently, the sharply defined particles
can not change their number in conservative systems. The very important chemical
conclusion of all these facts is that particle Fock theories reject the possibility of
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chemical reactions to occur in conservative conditions. On the other hand a nat-
ural extrapolation of experimental results concerning chemical transformations
lead to the conclusion that chemical substances may react in isolated systems.
Taking this conclusion as a postulate we may affirm that only those Fock the-
ories, which are orthogonal but some of their states are not chemically pure or are
non-orthogonal may describe chemical changes of the number of chemical particles
in conservative conditions.

We are now in position to combine all these considerations for obtain-
ing the central “chemical” conclusion of this paper. It is based on the above-
obtained conclusion concerning theories able to describe chemical changes. That
conclusion becomes really interesting only if we are in position to construct
physically meaningful conservative evolutions predicting the changes of the num-
ber of chemical particles.

Let us notice again that, if a closed system is composed from particles,
which are sharply defined entities, then it can be described in a particle Fock the-
ory. More precisely, there exists a uniquely determined subspace H(k1, . . . , kn) of
that theory, which describes all states of the considered system. In other words
the description of such a system is purely mechanical. But for such systems the
standard quantum mechanics prescribes Hamiltonians of a well-known form.
This fact holds for any subspace so that for particle-theories we have physi-
cally significant conservative evolutions. Therefore, it becomes natural to assume
that chemical particles are composed from other, sharply defined particles, which do
not change their numbers when chemical reactions occur. It remains to show how
this hypothesis permits the construction of conservative evolutions suitable for
describing changes of the number of chemical particles. Before giving the appro-
priate mathematical scheme, it is useful to explain intuitively what we intend to
do. Firstly we will take a family of species of particles, which are assumed to
compose the chemical particles. These particles are elementary, in the sense that
they do not change during chemical processes. It follows naturally that they will
be described by a particle theory. Then it will be assumed that any chemical
particle is composed by a well-determined number of elementary particles from
each species. This assumption leads naturally to the possibility of “embedding”
the Fock theory for chemical particles into that for elementary particles. The
important result of this procedure is that the conservative evolutions may induce
changes in the number of chemical particles. Now, for proving this we have to
put the problem in the precise mathematical language of Fock theories.

Let us assume that particles of the species s1, . . . , sn are composed from
particles of the species ε1, . . . , εm. These particles are described by a particle
Fock theory constructed in a Hilbert space G. The characteristic set of sub-
spaces of this theory is {G(j1, . . . , jm); (j1, . . . , jm) ∈ N

m}. Let us denote by
(ε1 |si), . . . , (εm |si) the number of particles of the species ε1, . . . , εm respectively
composing one particle of the species si . Taking into account that the Fock
theory for the species s1, . . . , sn is defined in the Hilbert space H, we will say
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that these particles are constructed from particles of the species ε1, . . . , εm if
there exists an linear function f : H → G, satisfying the following requirements:

(c1) f : H → f (H) is an isomorphism of Hilbert spaces;

(c2) the orthogonal projectors on the subspaces f (H(k1, . . . , kn)) and
G(j1, . . . , jm) commute for all (k1, . . . , kn) ∈ N

n, (j1, . . . , jm) ∈ N
m;

(c3) f (H(k1 . . . , kn)) ∩ G(j1, . . . , jm) �= {0} ⇒ ∑
i ki(εu

∣
∣si) � ju, ∀u, 1 � u � m.

The (c1)–(c3) conditions have clear physical meanings. Thus, condition (c2)
means that we admit that in principle the number of chemical and of “elemen-
tary” particles entering in their composition may be measured simultaneously. In
fact this assumption looks natural once we accepted that the numbers (εj |si) are
known for all 1 � j � m, 1 � i � n. The (c1) and (c3) conditions have an obvi-
ous meaning, so that special explanations are not necessary. It should be under-
stood that the existence of the function f in (c1)–(c3) is nothing more than the
mathematical transcription of the assumption concerning the structure of chemi-
cal particles. In Appendix we give an example, which shows that this assumption
is in accord with the standard quantum-mechanical representations of chemical
particles as constituted from electrons and nuclei.

Let us consider a conservative evolution (Ut) for elementary particles defined
for a particle Fock theory with the subspaces G(j1, . . . , jm) ⊂ G, (j1, . . . , jm) ∈
N

m. We will show that it induces a conservative evolution for chemical particles,
able to predict chemical changes. In order to prove this fact we need to construct
a Fock theory for chemical particles in the space G. Naturally, such a theory must
be an extension of the already considered theory with the characteristic subspaces
{H(k1, . . . , kn); (k1, . . . , kn) ∈ N

n}. For the sake of simplicity in what follows the
subspaces f (H(k1, . . . , kn)) will be denoted also by H(k1, . . . , kn). To avoid any
confusion it is sufficient to remember that in the rest of the paper H(k1, . . . , kn)

are subspaces of G. It must be kept in mind that f (H(0, . . . , 0)) ⊕ f (H)⊥ =
H(0, . . ., 0), the right part denoting the vacuum in the space G, according to the
above-accepted convention (here f (H)⊥ is the orthogonal complement of f (H)

and “⊕” the direct sum of subspaces). That is because in most cases f (H) �= G.
The following proposition establishes some properties of the embedded into the
space G theory and suggests that the number of chemical particles may change
during conservative evolutions.

Proposition 3. The following assertions are true:

(i) H(α) = ⊕
β∈Nm

[H(α) ∩ G(β)], ∀α ∈ N
n;

(ii) for any β ∈ N
m, G(β) is spanned by the union

⋃
α∈Nn [G(β) ∩ H(α)].
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Proof. Both assertions result from a property of commuting projectors. Let
{Pn; n ∈ N

n} be a family of projectors and Hn, n ∈ N, their ranges, respectively. If
Q is a projector with the property [Q, Pn] = 0, ∀n, then the union

⋃
n∈N

(G ∩ Hn)

spans the range G of Q. Taking into account the property (c2), the assertions (i),
(ii) result immediately. In (i) we use the direct sum since, as it is easy to verify,
the terms are mutually orthogonal.

It remains to observe now that the evolution (Ut) leaves the subspaces G(β)

invariant but, as it results from Proposition 3(ii), the number of chemical parti-
cles is changed.

The physical point is that physically meaningful conservative evolutions for
elementary particles whose number does not change may predict the change of
the number of chemical particles. That is why we affirm that the chemical reac-
tions in conservative conditions may be predicted if it is assumed that chemical par-
ticles are constituted from elementary particles, i.e. particles whose number does
not change in time during chemical processes. At this moment it may be consid-
ered that we obtained a satisfactory argumentation for the assertion (C2).

4. Comment

In this short section we intend to discuss an important consequence of the
above-presented theoretical developments. It is strictly related to the Theorem,
which has been proved in the third section. In strictly chemical terms, this result
claims that sharply defined chemical particles can not react in conservative con-
ditions. It has been obtained after we accepted that the sharply defined par-
ticles are those, which may be described only by chemically pure states. This
fact generates a conflictive situation. We mean that the fundamental dynami-
cal law of quantum mechanics does not “permit” chemical reactions between
sharply defined particles. On the other hand, many quantum chemical develop-
ments accept implicitly a sort of “sharpness” of atoms and molecules, even if
their electronic–nuclear structure is explicitly considered. In fact quantum chem-
ical kinetics studies mainly elementary reactions, in which the mentioned ques-
tion of “sharpness” do not appear. One of the merits of Fock theories is that
they offer the possibility to distinguish between sharply and non-sharply defined
chemical particles.

Returning to the above-evidenced conflictive situation, we saw that it forces
us to reject particle Fock theories for describing reacting chemical particles and
accept implicitly that chemical particles are not sharply defined. But this only
fact is obviously insufficient for our purpose. We have to find a natural way for
accounting the possibility that chemical reactions may occur in conservative sys-
tems. The concrete problem is how to find meaningful conservative evolutions
able to predict chemical changes. The most natural idea, based on the generally
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accepted conjecture about particle description of systems is that in any chem-
ical system there are particles, which do not change during chemical reactions
and enter in the composition of chemical particles. They must be described by
particle Fock theories. As it has been seen in our work, this idea was sufficient
for constructing “reactive evolutions”. This is the way in which the structure
of chemical particles may be predicted by quantum-mechanical dynamical argu-
ments. It is also understandable that the physical origin of the non-sharpness of
chemical particles is exactly the fact that they are composed from other particles.

Appendix

Let us consider the chemical species s1, . . . , sn whose particles/chemical par-
ticles are constituted from “elementary” particles of the species ε1, . . . , εm. We
will sketch the construction of a Fock theory for chemical particles embedded
into a particle Fock theory for “elementary” particles, which is a Fock space

G = ⊕
(j1,..,jm)

G(j1, . . . , jm). (1)

According to Proposition 3, if the subspaces H(k1, . . . , kn) ∩ G(j1, . . . , jm) are
constructed, then the Fock theory we look for is completely determined. In order
to do this, we will use a technique of clusters, which may be found in the Reed
and Simon’s book, [3]. Since our example is only illustrative, the embarrass-
ing symmetry considerations will be avoided. Let us begin with the simplest
situation. Consider B a finite set of “elementary” particles and denote by β

the number of its elements. Consider also a family {C1, . . . , Ck},
⋃k

i=1 Ci = B of
mutually disjoint subsets of B. The elements of this set will be called clusters.
Let us denote hβ the standard Hamiltonian for particles from B, which acts
in the Hilbert space H(B) = L2(R3β). For any cluster Ci we may define an
“inner” Hamiltonian, which is the standard Hamiltonian for particles from Ci

only. Then, according to Reed and Simon, we may represent the space H(B) as
a tensor product of a family of subspaces, as follows:

H(B) = H(T ) ⊗ H(Tc) ⊗ H(C1) ⊗ · · · ⊗ H(Ck). (2)

All spaces in (2) are L2-spaces. The space H(T) corresponds to the center of
mass of all particles from B, H(Tc) to the center of mass of all clusters, H(Ci)

to the particles of the cluster Ci after the movement of their center of mass has
been removed. Since we consider that all clusters represent chemical particles, it
must be admitted that all inner Hamiltonians have bound states. Let Hb(Ci) be
the closed subspace of H(Ci) spanned by the bound states of the cluster Ci . In
this case we may construct the subspace
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Hb(B) = H(T ) ⊗ H(Tc) ⊗ Hb(C1) ⊗ · · · ⊗ Hb(Ck). (3)

It is obvious that Hb(B) is a subspace of the type H(k1, . . . , kn), where n =
k, ki = 1, 1 � i � n.

The form of the subspaces H(k1, . . . , kn)∩G(j1, . . . , jm) is given bellow. In
the next formula, the particles of the chemical species are clusters of particles
of the species εj and H(si) denotes the subspace of bound states of the clusters
corresponding to the species si :

H(k1, . . . , kn) ∩ G(j1, . . . , jm)

= H(T ; j1, . . . , jm) ⊗ H(Tc; k1, . . . , kn) ⊗ H(s1)
⊗k1 ⊗ · · · ⊗ H(sn)

⊗kn ⊗
⊗Hr(j1, . . . , jn). (4)

The meaning of terms in the formula (4) is quite clear from the preceding exam-
ple, except the last term representing the space corresponding to those particles,
which do not enter in the clusters defining chemical particles. It is clear that by
following this procedure, we have no chance to obtain orthogonal theories. It is
also important to observe—and this fact has a transparent physical meaning—
that the vacuum of such a theory must be a subspace of infinite dimension.
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